

Case studies about electricity grid at risk of random damages

Piotr Hadaj Rzeszow University of Technology Department of Complex Systems Science for Peace and Security (2024) Energy infrastructure resilience in response to war and other hazards Advanced Research Workshop (ARW) supported by NATO

POLAND, Rzeszów, 23.09.2024

Presentation plan

- 1. Introduction
- 2. Research conducted and results obtained
- 3. Current research
- 4. Source data
- 5. Visualization
- 6. Simulations and results
- 7. Summary

- 1. Extracting data from the PGE.
- 2. Bringing the data into graph form.
- 3. Analyzing graph properties in software packages:
 - a) Gephi,
 - b) Network Workbench,
 - c) NetworkX.
- 4. Development of the results of the performed analyses.

Visualization of the logical and topological network of actual electrical connections in the PLANS package.

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Energy infrastructure resilience in response to war and other hazards – Workshop, 23-26 September 2024, Rzeszów, Poland

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Characteristic parameters of this type of graphs

- **1.** Average vertex degree the number of edges directly associated with a given vertex in the graph, determining its connections to other nodes.
- **2. The number of connected components** indicates how many parts the graph has decomposed into after removing the vertices.
- **3. Graph diameter** the longest path between two vertices in a graph, measured in the number of edges.
- 4. Clustering a measure of how much the vertices in a graph group into clusters or clusters.
- **5. Graph efficiency** a measure of how efficiently information or influence can spread through a graph, taking into account both direct and indirect connections between vertices.
- **6. Graph density** the ratio of the number of existing edges to the number of all possible edges in the graph.
- 7. Path length in a graph the number of edges on the shortest path between two vertices.

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Number of nodes in the graph	102
Number of edges in the graph	116
The average node degree	2.275
Graph density	0.023
Local graph efficiency	0.081
Average graph efficiency	0.182
Average clustering coefficient	0.099
Average path lenght	7.661
Graph diameter	20.000

Original form of the graph before the simulation procedure

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Analysis of the degree of vertices in a graph (graph centrality analysis). The intensity of the blue color and the size of the node refer to the degree of the node. The numbers refer to the fraction of the node's degree relative to the STW node (Stalowa Wola power grid node).

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Disabled nodes	0	1	2	3	4	5
Number of nodes in the graph	102	101	100	99	98	97
Number of edges in the graph	116	107	101	96	91	86
The average node degree	2.275	2.119	2.020	1.939	1.857	1.773
Graph density	0.023	0.021	0.020	0.020	0.019	0.018
Local graph efficiency	0.081	0.070	0.071	0.065	0.058	0.052
Average graph efficiency	0.182	0.135	0.088	0.070	0.059	0.050
Average clustering coefficient	0.099	0.095	0.104	0.100	0.094	0.119
Average path lenght	7.661	9.140	6.619	5.894	5.612	5.643
Graph diameter	20.000	25.000	18.000	17.333	17.000	17.000

Piotr Hadaj

Rzeszow University of Technology, Department of Complex Systems

This workshop
is supported by:The NATO Science for Peace
and Security Programme

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshop
is supported by:The NATO Science for Peace
and Security Programme

PLANS and NetworkX

- 1. Source data
- 2. Transfer of data to the graph.
- 3. Comparative analysis of the simulations performed in both software packages.
- 4. Software packages
- 5. Algorithms of calculation
- 6. Calculations
- 7. Results and conclusions.

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Energy infrastructure resilience in response to war and other hazards – Workshop, 23-26 September 2024, Rzeszów, Poland

PLANS and NetworkX

Modernized scheme - the format of the KDM in PLANS

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshopThe NATO Science for Peaceis supported by:and Security Programme

14

PLANS and NetworkX

Mathematical graph created on source data

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshop is supported by:

The NATO Science for Peace and Security Programme

PLANS and NetworkX INCREASE REACHED MAX **START END** <-NO FAILED NODES YES FAILED NODES NUMBER? NUMBER YES Monte Carlo algorithm for RESTORE LOAD ORIGINAL simulating multiple random ORIGINAL REACHED MAX POWER GRID 'NOʻ REPETITION topology failures **POWER GRID** NUMBER? DATA DATA ZERO STEP: CALCULATE CALCULATE SIMULATE FAIL PARAMETERS/ START FROM PARAMETERS/ CHECK OF N RANDOM CHECK CONVERGENCE N=1 NODES FOR ORIGINAL CONVERGENCE STRUCTURE

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshopThe NATO Science for Peaceis supported by:and Security Programme

16

PLANS and NetworkX

Simulations in PlansTRM macro and generator table view

PlansT	RM - []										<u>12</u>	o x
Dane	Obliczenia Wyniki Narzedzia Edytory Okno	Pomoc										
-+												
Ţ	🔆 「											
2	$\mathbb{X} \times \mathbb{X}$											
	ONEDRIVEPRZ\OpeDrive - ICRPANPCSS-8009567-Polite	chnika Rzesz	owska im. lo	nacego Luk	asiew							
		******	errorite training	neesile soo				a da la com	- 31/2			
1	int T M.	Danau	raleuve Gen	ersten: [Cal	oćć1							
	float Fr	P Dane w	eziowe - Gen	eratory [Ca	oscj	1				1	1	1
3	float Dr. Kf. f. Hinrim HinrimSum Dl.	Gen.	Nazwa	Węzeł	Stan	Sn	Тур	Pg	Pmin	Pmax	Qg	Qmin
-	atming S.	-	-	-	•	MVA	-	MW	MW	MW	Mvar	Mvar
5	string 5;	OLI_4-01	OLI 4-01	OLI411	Wył.	150.0	JWCDp	100.00	-135.00	135.00	42.50	-29.00
0	int 1,], st, k, Gindex, GindexF, next,	OLI_4-02	OLI_4-02	0LI411	Wył.	150.0	JWCDp	100.00	-135.00	135.00	40.00	-29.00
15	11	BRE_4-01	BRE_4-01	BRE411	Wył.	235.0	JWCDc	205.00	110.00	215.00	-12.79	-33.00
8		BRE_4-02	BRE_4-02	BRE411	Wył.	235.0	JWCDc	205.00	110.00	215.00	48.15	-33.00
9	<pre>I = CzytDane("c:\temp\dane.bin");</pre>	BRE_4-03	BRE_4-03	BRE411	Wył.	235.0	JWLDc	205.00	110.00	215.00	-12.79	-33.00
10		TWI_1-01	TWI_1-01	TWITT		105.0	MC	80.00	8.00	50.00	84.75	-1.00
11	Calc[].Met=2	TWI_1-02	TWI_1-02	TANITI	C	105.0	ML	80.00	110.00	215.00	84.75	-1.00
12	Calc[].RegQ=0	TAN_1-03	TAN_1-03	TANITI	6	235.0	JWLDC	195.00	110.00	215.00	70.60	-33.00
13		TAN_4-01	TAN_4-01	TAN411	N.7.4	235.0	JWLDC	195.00	110.00	215.00	-7.24	-33.00
14	;Calc[].Eps=0.01	DEE 1.01	DEE 1.01	DEE111	wyr.	235.0	JWCDC	195.00	4.20	215.00	-0.30	-33.00
15	;wybor wezla	UEC_1-01	DEC_1-01	DEETTI VILA112		27.0	MUCK	19.00	4.20	22.00	70.44	0.00
16	i=8;	PHI 1.01	PHI 1.01	PHI112	6	1175	JWCDo	102.00	2.00	110.00	51.42	0.00
17		PHI 1.02	PHI 1.02	PHI112		117.5	JWCDc	102.00	90.00	110.00	66.64	0.00
18	R=calclf();	TOB 1.01	TOB 1.01	T0B112	Wak	70.0	ME	48.00	0.00	70.00	14.00	-14.00
19		TID 1-01	TID 1-01	TID112	wyn.	117.5	JWCDc	102.00	80.00	110.00	126.06	0.00
20	;I = Bilans();	WKA 1-01	WKA 1-01	WKA112	Wuł	117.5	JWCDc	102.00	80.00	110.00	29.10	0.00
21	galindex=1;	MUS 4-01	MUS 4-01	MUS412	1.1.2.1.	235.0	JWCDc	180.00	110.00	215.00	68.04	-33.00
22	UiprimSum=0;	MUS 4-02	MUS 4-02	MUS412		235.0	JWCDc	180.00	110.00	215.00	68.04	-33.00
23	PgSum=0;	MUS 1-03	MUS 1-03	MUS112	Wył.	235.0	JWCDc	165.80	135.00	225.00	32.92	-33.00
24	PlSum=0;	MUS 1-04	MUS 1-04	MUS112		235.0	JWCDc	165.80	135.00	225.00	-30.69	-33.00
						== 3(*	and the second second second					

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

NetworkX simulation results

Excluded nodes	Graph efficiency	Minimum observed efficiency	Average clustering coeficcient	Minimum observed local efficiency	% of PLANS imbalance cases
0	0.211691	0.211691	0.168032	0.175659	0
1	0.209994	0.192695	0.166500	0.153961	96.78 %
2	0.208472	0.178102	0.164964	0.133100	99.23 %
3	0.206406	0.164621	0.163118	0.124692	99.95 %
4	0.204678	0.153897	0.161576	0.112336	99.99 %
5	0.202462	0.131334	0.160204	0.102921	100 %

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshop
is supported by:The NATO Science for Peace
and Security Programme

Conclusions

- 1. The power grid is in good topological shape, but not very fault-tolerant.
- 2. Specialized software enables a more complete analysis of the network, taking into account unique parameters.
- 3. The Monte Carlo method compares simulated failures in different environments.
- 4. Future research may focus on making the network more resilient by adding redundancy.
- 5. It is necessary to include worst-case scenarios and larger data models in network analysis.
- 6. Focusing on worst-case scenarios in network analysis is the key.
- 7. Simulations using PLANS and the Monte Carlo method confirm the value of worstcase analysis.

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Current research

- 1. Extracting data from OpenStreetMap (OsmNX)
- 2. Transferring data to a mathematical graph (NetworkX)
- 3. Simulation of network damage for different variants (multiple repetitions for random elements)
- 4. Analysis of graph parameters for each variant (averaged results)

Current research

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

Current research import networkx as import numpy as np

```
import numpy as
import os
import math
```

```
for filename in os.listdir('.'):
    if filename.endswith('.graphml'):
        print('wczytywanie pliku '+filename)
        G = nx.read_graphml(filename)
```

Python language code that loads a graph from a file and performs calculations (part)

```
print('obliczenia dla '+filename)
n = G.number_of_nodes()
m = G.number_of_edges()
print("liczba węzłów "+str(n)+", liczba krawędzi "+str(m))
k = np.mean([d for n, d in G.degree()])
r = nx.radius(list(G.subgraph(c) for c in nx.connected_components(G))[0])
d = nx.diameter(list(G.subgraph(c) for c in nx.connected_components(G))[0])
C = nx.transitivity(G)
CC = nx.average_clustering(G)
```

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshop
is supported by:The NATO Science for Peace
and Security Programme

Energy infrastructure resilience in response to war and other hazards – Workshop, 23-26 September 2024, Rzeszów, Poland

Poland

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshopThe NATO Science for Peaceis supported by:and Security Programme

24

Current research

Finland

Croatia

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshop
is supported by:The NATO Science for Peace
and Security Programme

25

New research directions

- Simulation of failure of a larger number of nodes, > 15%.
- Simulation of failure in a specific geographic region.
- Simulation of failure under dynamic conditions.
- Simulation of the failure of the edges/top nodes.

Summary

- Fairly detailed data from OSM
- Lack of typical diagrams safety issues
- Lengthy simulation calculations graphs contain up to hundreds of thousands of nodes

Thank you for your attention

Piotr Hadaj Rzeszow University of Technology, Department of Complex Systems

This workshop
is supported by:The NATO Science for Peace
and Security Programme