Workshop Energy infrastructure resilience in response to war and other hazards 23–26 September 2024 Rzeszów, Poland

Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

ANATOLII CHERNIAVSKYI Training Center for Energy Managers of Igor Sikorsky Kyiv Polytechnic Institute, Ukraine

OLENA BORYCHENKO Department of power supply Igor Sikorsky Kyiv Polytechnic Institute Science for Peace and Security (2024) Energy infrastructure resilience in response to war and other hazards Advanced Research Workshop (ARW) supported by NATO

POLAND, Rzeszów, 24.09.2024

Background and Relevance

Russia came with a war to the territory of Ukraine **10 years ago**.

For the **last 900 days**, we have been in a particularly hot phase of the war and are experiencing it in conditions of daily horrors, deaths of children and destruction.

The ongoing war in Ukraine has resulted in widespread destruction of critical infrastructure, including schools and kindergartens.

The destruction of the educational infrastructure leads to a violation of children's and youth's access to education, affects the quality of education, socialization, integration into society.

The results of the calculations of the Kyiv School of Economics showed that as a result of the destruction caused to schools, kindergartens, universities and other educational institutions, **Ukraine suffered losses in the amount of at least 6.8 billion dollars**.

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Destroyed school in Chernihiv / Photo: Oleksandr Gulich https://24tv.ua/education/skilki-zakladiv-osviti-ponishhili-rosiyani-ukrayini_n2626819

Destroyed kindergarten https://static.nv.ua/

Geography of damaged or destroyed schools and kindergartens in Ukraine

According to Forbes, educational institutions were most destroyed or damaged in frontline areas:

- Donetsk 67.27%;
- Kharkiv 37.79%;
- Luhansk 35.14%;
- Mykolaiv 25.53%;
- Kherson 20.95%;
- Zaporizhzhia 16.8%;
- Kyiv 13,5%;
- Chernihiv 12,7%.

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

This workshop is supported by:

shopThe NATO Science for Peaced by:and Security Programme

The number of schools and kindergartens destroyed or damaged due to the war in Ukraine

Destroyed Damaged

200 400 600 800 1000 1200 1400

According to the Ministry of Education and Science of Ukraine, **every seventh school** in Ukraine **has been damaged** or **destroyed** since the beginning of the full-scale invasion of Russia.

> During the 900 days of war in Ukraine, 2,600 schools and kindergartens were destroyed or damaged.

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten <u>buildings with accordance of energy efficiency requirements</u>

NATO OTAN

TAN This workshop TAN is supported by:

orkshopThe NATO Science for Peacerted by:and Security Programme

We have a lot of damaged schools an kindergartens in Ukraine, but we do not have enough experience of rehabilitation of these buildings.

Our vision to solve this problem:

- ✓ Identification of the main Damages of Schools and Kindergartens infrastructure due to the war
- ✓ Determination of the Main Challenges in Rehabilitating Partially Damaged Buildings
- ✓ Development of the procedure of Rehabilitation of Partially Damaged Buildings
- ✓ Calculation of the heat losses in building envelops
- Determination of the value of Energy Efficiency Potential of real schools
- ✓ Identification of the Key Energy-Efficient Improvements

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Brief Description of War-Damaged Infrastructure of Schools and Kindergartens

The extent of damage can vary from minor structural issues to complete destruction, depending on the intensity and duration of the hostilities. Below is a summary of the typical impact on school and kindergarten infrastructure in war zones:

1. Structural Damage	2. Interior and Classroom Destruction
 Partial or Complete Collapse of walls, roofs, and supporting structures due to direct hits from bombs, artillery fire, or missile strikes Weakening of the foundation of the building Damaged Windows and Doors 	 Destroyed Classrooms due to collapsed ceilings, damaged furniture, and broken floors Loss of Learning Spaces (libraries, laboratories, and other specialized learning spaces) impacting the school's ability to provide comprehensive education
3. Damage to Utilities and Essential Systems	4. Loss of Playgrounds and Outdoor Facilities
 Power lines, transformers, and internal wiring are frequently damaged or destroyed Water pipes may be broken or contaminated, and sewage systems can be damaged HVAC systems are often severely damaged, which is crucial for a healthy learning environment 	 Outdoor playgrounds, sports fields, and recreational facilities are often destroyed or heavily damaged Schoolyards and playgrounds may become contaminated with unexploded ordnance (UXO), making them hazardous for children to use without proper clearance efforts

Anatolii Cherniavskyi, Olena Borychenko

Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Overview of the Challenges in Rehabilitating Partially Damaged Buildings

The process of restoring these buildings requires a careful balance of maintaining structural integrity, preserving historical value (when relevant), and upgrading to meet modern standards, including energy efficiency and resilience. Below is an in-depth overview of the major challenges encountered when rehabilitating partially damaged buildings:

1. Structural Damage and Safety Concerns	2. Retrofitting for Modern Building Codes	3. Limited Financial Resources, Legal and Administrative Barriers
 Assessment of Structural Integrity Stability During Restoration Hidden Damages 	 Adapting to New Building Standards Energy Efficiency Upgrades 	High Costs of RestorationConflicting PrioritiesPermitting Delays
4. Skilled Labor Shortages	5. Logistical and Environmental	6. Preserving Historical and Cultural
	Challenges	Integrity

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

The main steps in Rehabilitation of Partially Damaged Buildings

3. Description of the condition of the building

3.1 General condition

Building Type	Public School #24							
Construction Date	1934	Currently in operation						
	Workdays	Saturday						
Operation Schedule	12	-	-	(hour/day)				
Heating Schedule	24	-	-	(hour/day)				
Number of staff and teachers /	students							
Staff	275	Adult						
Student	800	Child						
Average indoor temperature: 20 °C								

Building Data

Total Heating Area	4 789	m^2	First Floor Area	1 400	<i>m</i> ²
Total Heating Volume	76 442	<i>m</i> ³	Second Floor Area	1 184	<i>m</i> ²
Roof Area	1 626	m^2	Third Floor Area	1 115	m^2
Number of Storeys	4	storey	Fourth Floor Area	1 089	m^2

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Example of Rehabilitation of Partially Damaged Buildings

Exterior walls								
General assessment of	the condition of the	e walls	Unsatisfa	ctory				
Total area of exterior walls (excluding windows/doors area)	3 748		<i>m</i> ²	Heat transfer Coefficient U _{average}	1.63	<i>W/m</i> ² K		
Type of wall	Material Type	Insulation Type	Insulation Thickness	Slab Thickness, <i>m</i>	Area, m²			
Solid wall	Silicate Brick	-	-	0.4	4 641			
Orientation	North-East	South	-East	South-West	North	West		
Wall NET area	1 128	93	6	914	77	0		
Description	1 128930914770The wall is built of silicate brick with a coefficient of thermal conductivity λ =0.95 W/m*K. Thickness is δ =0.4 m, Inner plaster is Gypsum δ =0.01 m, λ =0.5 w/m*K. External plaster is Sand-Cement plaster δ =0.02 m, λ =1.6 w/m*K.The existing thermal resistance of the wall is calculated as follows: R_0 =1/8.7+0.4/0.95+0.01/0.5+0.02/1.6+1/23 = 0.61 m ^{2*} K/W The heat transfer coefficient is: U= 1/0.61= 1.63 W/m ^{2*} K							

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Table:11- External Walls Data

External Walls											
General evaluation of the condition of the walls											
Total area external v	2363		m²	U _{value} (average)		1,88	W/m²K				
Orientation	N	NE	E	SE	S	SW	W	NW			
Wall area	623.87		593.32		538.69		607.12				
Material type	precast block	-	precast _ block _		precast block	-	precast block				
U _{value} , W/m ² K	1,88	-	1,88	-	1,88	-	1,88				
Insulation type	No		No		No		No				
Material type	• Pr ō = the ce = (R req = 1/8. U value = 1,8	NONONO• Precast block thermal conductivity coefficient $\lambda = 1.51$ W/mK. Wall thickness $\delta = 0.45$ m. Internal gypsum plaster thickness $\delta = 0.025$ m, internal plaster thermal conductivity coefficient $\lambda = 0.56$ W/mK, external plaster sand- cement mortar thickness $\delta = 0.025$ m, and thermal conductivity coefficient λ = 0.76 W/mK.R req = 1/8.7 +0.025/0.76+0.45/1.51+0.025/0.56+1/23.3 = 0.53 W/m ² KU value = 1.88 W/m ² K									
Insulation	No										

Picture:2- School External Walls

Anatolii Cherniavskyi, Olena Borychenko

Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Energy infrastructure resilience in response to war and other hazards – Workshop, 23-26 September 2024, Rzeszów, Poland

Table:12- Windows Data

Windows											
General evaluation of the condition of windows Damaged											
Total area win	dows		966		m²	U _{value} (avera ge)	2,9	W/m²K			
Orientation	Material ¹	Type ²	Area	Quantity	Solar energy absorption coefficient	U _{value}		•			
			m2	unit	g		۲				
Building											
N	Р	2G	206,15	69	0,5	2,9					
E	Р	2G	274,75	94	0,5	2,9					
S	Р	2G	291,35	100	0,5	2,9					
W	Р	2G	193,75	64	0,5		2,9				
Total both wir	ngs		966	327							
Material ¹	Wood (W), A	luminium	(AI), Plastic	(P), Steel (St)						
Type ²	Single-frame Single glazed	Single-frame (S), Double-frame (D), Bonded frame (B), Single glazed (1G), Double glazed (2G) , Triple glazed (3G)									

Picture:3- School Windows

Anatolii Cherniavskyi, Olena Borychenko

Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Table:13- Doors Data

Doors								
General evaluat	tion of the condition of doors:		Poor					
Steel doors		37,41	m ²	U _{value} St	6	W/m ² K		
Material ¹	Wood (W), Aluminium (Al), Plastic	(P), Stee	l (St)					
Type ²	Single-frame (S), Double-frame (D), Bonded frame (B), Single glazed (1G), Double glazed (2G), Triple glazed (3G)							

Picture:4- School Doors

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Distribution of heat losses of the building

Part of the building	Percentage
Windows and doors	27%
Walls	23%
Roof	17%
Ventilation and Infiltration	16%
Thermal bridges	9%
Floor	8%
TOTAL	100%

Heat balance of the school building, simulated during heating season with normalised climate data was obtained.

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Comprehensive Heat Transfer Coefficient of the Envelope

The comprehensive heat transfer coefficient represents the comprehensive thermal performance of the building envelope, and it can be seen from Equation that it is only related to the heat transfer coefficient and area of the exterior wall, exterior window, and roof.

$$U_{Co} = \frac{U_{wall}A_{wall} + U_{roof}A_{roof} + U_{win}A_{win}}{A_{wall} + A_{roof} + A_{win}},$$

where U_{Co} is the comprehensive heat transfer coefficient, W/(m²·K); U_{wall} is the heat transfer coefficient of the external wall, W/(m²·K); U_{win} is the heat transfer coefficient of the external window, W/(m²·K); U_{roof} is the heat transfer coefficient of the roof, W/(m²·K); A_{wall} is the area of the external wall, m²; and A_{win} is the area of the external window, m².

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Energy Efficiency Potential

EE MEASURES		Investment	Net	Saving	Payback	NPV
	EE MEASORES	[GEL]	[kWh/yr]	[GEL/year]	YEAR	[GEL]
1	INSULATION OF WALLS	782,153.00 ₾	728,570.63	108,994.17 ₾	7.2	1,356,984.84 ₾
2	ROOF INSULATION	466,180.00 ₾	1,204,140.30	180,139.39 ₾	2.6	3,069,265.95 ₾
3	IT IS RECOMMENDED TO REPLACE ALL EXISTING DOUBLE- GLAZED WINDOWS AND UNINSULATED DOORS WITH ONES THAT HAVE A U VALUE OF 1.8 Wm ² /K. BY DOING SO, SIGNIFICANT REDUCTIONS IN HEAT LOSS DUE TO THERMAL TRANSFER CAN BE ACHIEVED IN THE BUILDING'S EXTERNAL COMPONENTS.	891,000.00 ₾	366,002.13	54,753.92 ₾	16.3	183,609.62 ₾
4	REPLACEMENT OF BULBS	93,038.11 ₾	51,163.17	15,502.44 C	6.0	211,215.40 ₾
5	REHABILITATION OF HEATING SYSTEM AND DHW	41,250.00 ₾	14,611.00	2,185.8 ₾	18.9	-21,902.41 ₾
	TOTAL	2,273,621.11 ₾	2,364,487.23	361,575.72 ₾	6.29	4,799,173.39 ₾

Anatolii Cherniavskyi, Olena Borychenko

Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Energy Efficiency Potential: Thermal Insulation of Walls

Based on the investigation of the enclosure structure of more than 50 school buildings in different climate zones of Georgia and Ukraine among the exterior wall construction materials, rock wool is the main choice of insulation layer, accounting for approximately 50 % of all thermal insulation materials.

- (1) Brick Wall Base
- (2) Building Adhesive
- (3) Rockwool board
- (4) Protective Cement
- (5) Fiber glass mesh
- (6) Insulation pin
- (7) Protective coating

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

workshop The NATO Science for Peace and Security Programme

Energy Efficiency Potential: Thermal Insulation of Walls

Level of thermal performance improvement for different insulation exterior walls

Quantification of the heat transfer coefficient of a rock wool
insulation exterior wall

	Thermal Performance Improvement				Material	Thickness mm	Thermal Conductivity W/m·K	U-Value W/m ² ·K
Thickness (mm)	Rock wool		FPS	YPS		10	0.041	0.528
	NOCK WOOI	-				20	0.041	0.468
10	24.61%		26.89%	28.01%		40	0.041	0.381
20	33.21%	1	36.71%	38.36%		60	0.041	0.321
40	45.61%		50.11%	52.13%		80	0.041	0.278
60	E4 120/		E0 000/	(0.970/	Rock wool	100	0.041	0.244
60	54.15%		38.82%	60.87%		120	0.041	0.218
80	60.34%	•	64.95%	66.91%		140	0.041	0.197
100	65.07%		69.48%	71.34%		160	0.041	0.180
120	68 79%		72 98%	74 72%		180	0.041	0.166
120	00.7 770		72.7070	74.7270		200	0.041	0.153
140	71.80%		75.76%	77.39%	Cement mortar	20	0.93	N/A
160	74.28%		78.02%	79.55%	Aerated concrete block	200	0.14	N/A
180	76.35%		79.90%	81.33%				
200	78.12%		81.48%	82.83%				

Source: Lu, S.; Wang, Z.; Zhang, T. Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China. Sustainability 2020, 12, 437. https://doi.org/10.3390/su12010437

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

The NATO Science for Peace This workshop and Security Programme is supported by:

Thicknessmm	Exterior Wall		Roof	
Thickness mm	U-Value W/(m ² ·k)	Improvement	U-Value W/(m ² ·k)	Improvement
10	0.53	24.61%	1.91	N/A
20	0.47	33.21%	1.30	N/A
40	0.38	45.61%	0.80	N/A
60	0.32	54.13%	0.57	N/A
80	0.28	60.34%	0.45	0.40%
100	0.24	65.07%	0.37	18.27%
120	0.22	6 <mark>8</mark> .79%	0.31	30.70%
140	0.20	71.80%	0.27	39.85%
160	0.18	74.28%	0.24	46.87%
180	0.17	76.35%	0.21	52.42%
200	0.15	78.12%	0.19	56.92%

Lu, S.; Wang, Z.; Zhang, T. Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China. Sustainability 2020, 12, 437. https://doi.org/10.3390/su12010437

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Energy Efficiency Potential: Example of thermal modernisation of educational facilities with the EIB funds In Ternopil city

April 7, 2023 – In Ternopil cit was launched the project to improve the energy efficiency of educational institutions under the Ukraine Municipal Infrastructure programme (UMIP) from the European Investment Bank (EIB).

Preschool educational institution №32 is the first kindergarten in the city modernised and insulated under UMIP.

Source:

https://www.eeas.europa.eu/delegations/ukraine/terno pil-launches-thermal-modernisation-educationalfacilities-eib-funds_en?s=232

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

Energy Efficiency Potential: Using of Hybrid Solar power

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

This workshop is supported by:

*kshop*The NATO Science for Peace*ved by:*and Security Programme

Energy Efficiency Potential: Example of installation of Hybrid Solar power plant in Chernihiv

The power of the solar station is 35 kW, and the capacity of the installed energy storage system is 96 kWh.

Source: https://ua-energy.org/uk/posts/avtonomni-ses-dlia-shkil-ta-likaren-iak-potrapyty-u-proiekt

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

SUMMARY: Key Energy-Efficient Improvements

Below are some of the most important energy-efficient Improvements used today:

1. Insulation Upgrades	2. Window and Door Upgrades	3. Improving the Building Envelope
Wall InsulationRoof/Ceiling InsulationFloor Insulation	 Double or Triple-Glazed Windows Low-Emissivity (Low-E) Coatings Weatherstripping and Sealing 	Air SealingThermal Bridging Solutions
4. HVAC System Upgrades	5. Lighting Upgrades	6. Water Heating Improvements
High-Efficiency HVAC SystemsSmart ThermostatsDuct Sealing and Insulation	 Switching to LED Lighting Daylighting Strategies Smart Lighting Controls 	Tankless Water HeatersHeat Pump Water Heaters
7. Renewable Energy Integration	8. Water Conservation Retrofits	9. Building Automation and Smart Energy Management Systems
 Solar Photovoltaic (PV) Systems Solar Water Heaters Geothermal Heating and Cooling Battery Storage 	Low-Flow FixturesGreywater Recycling Systems	 Building Management Systems Demand Response Systems

Anatolii Cherniavskyi, Olena Borychenko

Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

This workshop is supported by: 2

kshopThe NATO Science for Peaceed by:and Security Programme

Conclusion

- 1. The rehabilitation of partially damaged schools and kindergartens in post-war regions presents an opportunity to incorporate energy efficiency into the rebuilding process. By adopting energy-efficient improvements, such as solar power, high-performance insulation, and smart energy management technologies, educational facilities can be transformed into sustainable, cost-effective, and resilient structures.
- 2. The integration of energy efficiency not only reduces long-term operational costs but also contributes to environmental sustainability and improves the learning environment for students.
- 3. To achieve successful energy-efficient rehabilitation, it is essential to leverage a combination of international energy standards, local building codes, and available financial mechanisms such as government incentives, public-private partnerships, and international aid. Stakeholder engagement, including collaboration with local communities, governments, and private sector partners, plays a critical role in ensuring the feasibility and sustainability of these projects.
- 4. Rebuilding war-damaged educational facilities with a focus on energy efficiency is not only necessary for immediate recovery but also vital for long-term resilience and sustainability.

Anatolii Cherniavskyi, Olena Borychenko Rehabilitation of partially damaged during the war school and kindergarten buildings with accordance of energy efficiency requirements

