

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Olena Yarmoliuk Igor Sikorsky Kyiv Polytechnic Institute, Ukraine

Science for Peace and Security (2024) Energy infrastructure resilience in response to war and other hazards Advanced Research Workshop (ARW) supported by NATO

POLAND, Rzeszów, 25.09.2024

Part 1 "Operability During Disruptions"

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

POLAND, Rzeszów, 24.09.2024

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Part 2 "Low-Power Renewable Energy Communities"

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Introduction

Our Research Focus:

Explore strategies for autonomous operation of Renewable Energy Communities in Ukraine's energy reform landscape

Analyze these systems during autonomy conditions or blackouts

Optimize existing hybrid power systems integrating diverse renewable sources

Enhance the country's energy security through resilient Renewable Energy Communities structures

In this presentation, we will:

Provide an overview of Ukraine's renewable energy landscape

Outline our mathematical modeling approach for Renewable Energy Community operation

Present results on achieving Renewable Energy Communities autonomy through capacity optimization

Discuss implications and recommendations for fortifying energy

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Renewable Energy Landscape in Ukraine

Ukraine's energy reforms prioritize distributed generation, aligning with the EU's directives. Renewable Energy Communities exemplify this trend, forming decentralized energy systems. Amid energy sector evolution, optimizing hybrid power systems, integrating various Renewable Energy Community, is crucial for resilience, especially post-conflict or natural disasters

Table 1. Renewable Energy Sources Market Segmentation Based on Power Plant Capacities

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

The NATO Science for Peace This workshop and Security Programme is supported by:

Renewable Energy Landscape in Ukraine

Regionally, Vinnytsia, Khmelnytskyi, Ivano-Frankivsk, Kyiv, and Zakarpattia lead in small Renewable Energy Sources capacity.

Biogas is gaining traction, with 140 MW installed capacity and 505.4 GWh generated in 2022 across 83 plants, enhancing regional energy autonomy

Table 2. Technological Composition of Small Renewable Energy Power Plants: Regional Installation Structures

The NATO Science for Peace This workshop and Security Programme is supported by:

Research Objectives

Strategies to ensure the autonomous operation of Renewable Energy Communities within the Ukrainian context

1

2 **Autonomous systems sustainability, particularly during autonomy or blackouts modes**

3 Optimizing existing hybrid power systems

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

NATO OTAN

Objective functions are represented in a linguistic form:

The structure of each objective function will be as follows

where $j = 1, ..., m$ – total number of objective functions; *n* – number of generating sources (factors); *t* – specific period of time

 $\bigl(\bm{P} \bigr)$ 1 *n* j *t* $($ *i* $)$ \mathcal{I} \mathcal{L} \mathcal{L} \mathcal{L} j *i* i *it i* $F_{jt}(\boldsymbol{P}) = \sum a_{ji} P_i$ =

e.g.: 1) give preference to energy sources with higher specific capital costs:

$$
F_1(\mathbf{P}) = a_{11}P_1 + a_{12}P_2 + a_{13}P_3 + a_{14}P_4 \to \text{max}
$$

where a_{11} , a_{12} , a_{13} , a_{14} correspond to the specific (per 1 kW) value of capital expenditures of the generated capacity typical for individual generating plants

To formulate the target functions that characterize different electricity **market actors**, such as suppliers and operators, and their respective interests.

In specific conditions, the list of target functions can be **expanded**

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Operational conditions for the use of individual generating sources

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

NATO OTAN

The NATO Science for Peace This workshop and Security Programme is supported by:

Operational conditions for the use of individual generating sources

$$
F(\mathbf{P}) = a_{11}P_1 + a_{12}P_2 + a_{13}P_3 + a_{14}P_4 \rightarrow \text{max}
$$

a = 1, when there are no load restrictions on the *i*-th source;

a = 0,6–0,8 if it is undesirable to utilize the *i*-th source for meeting consumer loads in the *t*-th mode;

a = 0,2–0,4 – if it is highly undesirable to deploy the *i*-th source in the *t*-th mode.

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

The NATO Science for Peace This workshop and Security Programme is supported by:

We used the Bellman-Zadeh method, rooted in fuzzy set theory, for its advantages:

- 1. It considers both quantitative and qualitative factors simultaneously.
- 2. It defines a clear optimality criterion, aimed at maximizing all target functions.
- 3. It ensures the solution lies within the Pareto optimal region, offering a balanced resolution.

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

The NATO Science for Peace This workshop and Security Programme is supported by:

Simulation Setup

We conducted simulations across four distinct Renewable Energy Community structures

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Results - Autonomy with Biogas Capacity Increase

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Results - Autonomy with Biogas Capacity Increase

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

This workshop is supported by:

The NATO Science for Peace 15 and Security Programme

Results - Autonomy with Solar Capacity Increase

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Results - Autonomy with Solar Capacity Increase

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

This workshop is supported by:

The NATO Science for Peace 17 and Security Programme

Discussion

Type 1 & Type 3 Attaining Self-Sufficiency

Type 1: Requires a 175 % increase in biogas capacity or a 450 % increase in solar capacity for autonomy

Type 3: Needs a 150 % increase in biogas capacity or a 350 % increase in solar capacity for autonomy

Acknowledging Uncertainties & Limitations:

- Natural factors, grid configurations, load fluctuations, and other variables impact performance;
- Technical, economic, and environmental constraints must be considered;
- Optimize structure by considering resource potential, generation variability, costs, and environmental impacts.

Tailored Approach for Sustainability:

- Local conditions and priorities influence the optimal pathway;
- Customized strategies are essential for successful implementation and long-term sustainability.

Olena Yarmoliuk

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Conclusion

Our research illuminates prospects and strategies for achieving autonomous operation of renewable energy communities in Ukraine

Aligns with ongoing energy sector reforms towards decentralized, resilient systems

Feasibility Demonstrated:

- Rigorous simulations show achieving autonomy is feasible but requires substantial capacity increases;
- For biogas-dominant structures: Up to 175 % increase in biogas capacity;
- For balanced structures: Up to 350 % increase in solar photovoltaic capacity.

Future Directions:

- Further exploration and refinement of strategies for modernizing energy systems;
- Leveraging renewable energy communities and hybrid systems for enhanced energy security and sustainable development in Ukraine.

Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

Thank you for your attention!

Olena Yarmoliuk Ensuring Operability During Disruptions: Hybrid Energy Systems for Critical infrastructure

The NATO Science for Peace This workshop and Security Programme is supported by: